Epidermal growth factor stimulation of human breast cancer cells in culture.
نویسندگان
چکیده
Epidermal growth factor (EGF), a polypeptide found in human and animal blood and secretions, has been found to stimulate a variety of tissues in vitro including normal and malignant rodent mammary epithelium and human breast epithelial cells and fibroadenoma. We have studied the influence of EGF on malignant human breast tissue with a model system comprising human breast carcinoma cells growing in tissue culture. EGF stimulated growth of MCF-7 cells in serum-free medium. After 7 days in culture, a 2-fold increase in cell number and DNA content and a 3-fold increase in total protein were observed in cells incubated with EGF (10 ng/ml). As little as 0.01 ng/ml of EGF stimulated growth; 10 ng/ml was maximal. EGF effects on growth were noted for cells plated at a high as well as sparse (cloning) density. EGF also stimulated the rates of thymidine, uridine, and leucine incorporation into macromolecules in a dose- and time-dependent fashion. Stimulation of uridine and leucine incorporation was evident by 3 hr, whereas EGF stimulation of thymidine incorporation was delayed until 12 to 18 hr. EGF increased the proportion of cells active in DNA synthesis by nearly 2-fold. The combination of optimal concentrations of insulin (also a growth factor for these cells) and EGF did not stimulate growth above that seen with either hormone alone, suggesting a common step in their mechanism of action. The EGF effect was not dependent on the presence of serum and was not enhanced by dexamethasone as reported for other types of cells. EGF had no effect on another human breast cancer cell line, the MDA-231. These studies suggest that growth of some human breast cancers may be influenced by EGF.
منابع مشابه
Imaging features of estrogen-negative breast cancers: a correlation study with human epidermal growth factor type II overexpression
Background: Estrogen-negative breast cancers have different clinical course, prognostic features and treatment response in comparison to estrogen receptor-positive (ER-positive) breast cancers. Human epidermal growth factor receptor 2 (HER2) oncoprotein has found to have a pivotal role in natural cell growth and cell division and is suggested to be directly related to tumor invasiveness in brea...
متن کاملMolecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors
Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...
متن کاملFuture of Triple Negative Breast Cancer: Can Immunotherapy Treat This Deadly Subtype of Breast Cancer?
Triple negative breast cancer (TNBC): challenges and solutions via the immune cells TNBC is one of the most complicated types of breast cancer to treat. It is generally diagnosed based on the absence of three receptors: estrogen, progesterone, and human epidermal growth factor receptor 2 (HER2) and is thus defined as a triple negative. TNBC is often more aggressive with lower survival rates...
متن کاملBreast Carcinoma; Human Epidermal Growth Factor Receptor-2 (HER-2) and Grading Correlation
Introduction: Overexpression of Human Epidermal Growth factor Receptor-2 (HER-2) is one of the most important prognostic and predictive factors of breast cancer, observed in 25% - 30% of breast carcinoma patients leading to poor prognosis and feasible anti HER-2 antibody drugs. The objective of this study was to evaluate the HER-2 frequency in target population and its correlat...
متن کاملEvaluation of Human Breast Adenocarcinoma (MCF-7) Cells Proliferation in Co-Culture with Human Adipocytes in Three Dimensional Collagen Gel Matrix: Norepinephrine as a Lipolytic Factor
Background: Norepinephrine plays a trophic role in the control of cell replication and differentiation in target cells that express adrenergic receptors. Methods: In this study, we have tested the influence of infraphysiological, physiological and supraphysiological concentrations (0.0001 nM, 1 nM, 10000 nM) of human norepinephrine on the proliferation of breast cancer cells (human breast adeno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 40 7 شماره
صفحات -
تاریخ انتشار 1980